4/MTH-250 Syllabus-2023

2025

(May-June)

FYUP: 4th Semester Examination

MATHEMATICS

(Calculus—II)

(MTH-250)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer four questions, selecting one from each Unit

UNIT—I

1. (a) A function f is defined on the interval [0, 1] as follows:

$$f(x) = \begin{cases} \frac{1}{2^n}, & \text{when } \frac{1}{2^{n+1}} < x \le \frac{1}{2^n} \ \forall \ n = 0, \ 1, \ 2, \ \dots \\ 0, & \text{when } x = 0 \end{cases}$$

Show that f is integrable in [0, 1] and find the value of $\int_0^1 f(x) dx$.

- (b) Show that every continuous function on a closed and bounded interval is Riemann integrable.
- (c) Show that a bounded function f is integrable on [a, b] iff to each $\varepsilon > 0$, $\exists \delta > 0$ such that the oscillatory sum

$$|U(P, f) - L(P, f)| < \varepsilon$$

for all partitions P of [a, b] with $||P|| < \delta$.

(d) Show that if f is bounded and integrable on [a, b], then to every $\varepsilon > 0$, $\exists \delta > 0$ such that for every partition

 $P = \{a = x_0, \ x_1, \ ..., \ x_n = b\}$ of [a, b] with norm $\leq \delta$ and for every point $t_r \in [x_{r-1}, \ x_r]$

$$\left| \sum f(t_r)(x_r - x_{r-1}) - \int_a^b f \right| < \varepsilon$$

2. (a) Prove that the oscillation of a bounded function f on an interval [a, b] is the supremum of the set of numbers

$$\{|f(\alpha) - f(\beta)| : \alpha, \beta \in [a, b]\}$$

(b) Show that if f is bounded and integrable in [a, b], then |f| is also bounded and integrable in [a, b].

(c) If $\int_a^b f(x) dx$ exists and there exists a function ϕ such that $\phi'(x) = f(x)$, then show that

$$\int_{a}^{b} f(x) dx = \phi(b) - \phi(a)$$

(d) State and prove the first mean value theorem of integral calculus. 1+4=5

UNIT-II

- 3. (a) Show that the sequence of functions $\{f_n\}$, where $f_n(x) = n/(x+n)$ is uniformly convergent in [0, k], whatever k may be, but not uniformly convergent in $[0, \infty[$.
 - (b) Let $\{f_n\}$ be a sequence of derivable functions with pointwise limit f. Let f'_n be continuous for all n and let the sequence $\{f'_n\}$ be uniformly convergent with ϕ as uniform limit. Show that f is derivable and the derivative is equal to ϕ .
 - (c) State and prove Weierstrass' M-test for uniform convergence of a series of functions. 1+4=5

4

5

5

5

d) Prove that the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

4. (a) Test the convergence of the integral

$$\int_0^2 \frac{\log x}{\sqrt{2-x}} \, dx$$

5

(b) Discuss the convergence of the improper integral

$$\int_0^\infty \frac{x^{2m}}{1+x^{2n}} dx \ (m > 0, \ n > 0)$$

(c) If ϕ is bounded and monotonic on $[a, \infty]$ and $\int_a^{\infty} f \, dx$ is convergent at ∞ , then show that $\int_a^{\infty} f \phi \, dx$ is convergent at ∞ .

(d) Show that

$$\int_0^\infty \frac{\cos ax - \cos bx}{x} \, dx = \log \left(\frac{b}{a} \right) \, (a, \ b > 0)$$

UNIT-III

5. (a) Show that

$$\int_{C} [(x-y)^{3} dx + (x-y)^{3} dy] = 3\pi a^{4}$$

taken along the circle $x^2 + y^2 = a^2$ in the counter-clockwise sense.

(b) Evaluate $\iint xy(x+y) dx dy$ over the area between $y = x^2$ and y = x.

(c) Change the order of integration in

$$\int_0^{2a} \int_{x^2/4a}^{3a-x} \phi(x, y) \, dx \, dy$$

(d) If the double integral

integral

$$\iint\limits_R f(x, y) \, dx \, dy$$

exists where R is the rectangle [a, b; c, d] and if $\int_a^b f(x, y) dx$ exists $\forall y \in [c, d]$, then show that the repeated

$$\int_{c}^{d} \left\{ \int_{a}^{b} f(x, y) \, dx \right\} dy$$

exists and is equal to the double integral.

6. (a) Compute the volume enclosed by the surface $x^2 + y^2 = cz$, $x^2 + y^2 = 2ax$, z = 0.

D25**/1343**

(Turn Over)

5

5

6

(b) Evaluate

$$I = \iiint \sqrt{a^2b^2c^2 - b^2c^2x^2 - c^2a^2y^2 - a^2b^2z^2} \ dx \, dy \, dz$$

taken throughout the domain

$$\left\{ (x, y, z) : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \right\}$$

(c) Evaluate

$$\iiint (x+y+z+1)^2 dx dy dz$$

over the region defined by

$$x \ge 0$$
, $y \ge 0$, $z \ge 0$, $x + y + z \le 1$

UNIT-IV

7. (a) Show that

$$\int_{C} (y^{2} + z^{2}) dx + (z^{2} + x^{2}) dy + (x^{2} + y^{2}) dz = -2\pi ab^{2}$$

where the curve C is the part for which $x \ge 0$ of the intersection of the surfaces

$$x^{2} + y^{2} + z^{2} = 2ax$$
, $x^{2} + y^{2} = 2bx$, $a > b > 0$

the curve begins at the origin and runs at first in the positive octant.

(b) Show that

$$I = \iint_{S} yz \, dy \, dz + zx \, dz \, dx + xy \, dx \, dy = \frac{3}{8}$$

where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.

(c) Verify Green's theorem by evaluating it into two ways the line integral

$$\int_C x^2 y \, dx + xy^2 \, dy$$

taken along the closed path formed by y = x and $x^2 = y^3$ in the first quadrant.

8. (a) Show that

$$\iint_{S} [(y-z)dydz + (z-x)dzdx + (x-y)dxdy] = a^{3}\pi$$

where S is the portion of the surface $x^2 + y^2 - 2ax + az = 0$, $z \ge 0$.

(b) Show using Gauss' theorem that the surface integral

$$\iint_{S} [(x^3 - yz) dy dz - 2x^2 y dz dx + 2dx dy]$$

taken over the outer surface of the cube bounded by the planes

$$x = 0$$
, $x = \alpha$; $y = 0$, $y = \alpha$; $z = 0$, $z = \alpha$
is $\frac{1}{3}a^5$.

(c) State and prove Green's theorem. 1+6=7

* * *

7

6

6